ICONMAA 2024
Conference Management System
Main Site
Submission Guide
Register
Login
User List | Statistics
Abstract List | Statistics
Poster List
Paper List
Reviewer List
Presentation Video
Online Q&A Forum
Access Mode
Ifory System
:: Abstract ::

<< back

The Initial Coefficients for Bazilevic Functions Defined by q-Fractional Derivative
Saadatul Fitri, Marjono, and Ratno Bagus Edy Wibowo

Department of Mathematics, Universitas Brawijaya, Malang, Indonesia


Abstract

Let -S- be the class of analytic functions -f- in -\mathbb{D}=\{z: |z|< 1\}- with -f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}-. We investigate the subclass of Bazilevi{\v c} functions defined by, --\Omega^q f(z)=\Gamma(2-q) z^q D_z ^q f(z),-- where -\Omega ^q- be operator on -S- and -D_z ^q f- is the -q--fractional derivative of -f-. For -\alpha\ge 0- and -0\le q<1-, let -\mathcal{B}_1^q (\alpha,\lambda)- denote the class of Bazilevi{\v c} functions satisfying
--\left| \dfrac {z^{1-\alpha}(\Omega^q f(z))^}{(\Omega^q f(z))^{1-\alpha}}-1\right| <\lambda. --
The class -\mathcal{B}_1^q (\alpha,\lambda)- generalizes the class -\mathcal{B}_1 (\alpha,\lambda)- which introduced by Ponnusamy and Singh in 1996\cite{singh}. Sharp estimates for the first few coefficients of function in -\mathcal{B}_1^q (\alpha,\lambda)- are given.

Keywords: Analytic functions, Bazilevic functions, q-fractional derivative, initial coefficients.

Topic: Complex Analysis

Plain Format | Corresponding Author (Saadatul Fitri)

Share Link

Share your abstract link to your social media or profile page

ICONMAA 2024 - Conference Management System

Powered By Konfrenzi Ultimate 1.832M-Build7 © 2007-2025 All Rights Reserved