|
The Initial Coefficients for Bazilevic Functions Defined by q-Fractional Derivative Department of Mathematics, Universitas Brawijaya, Malang, Indonesia Abstract Let -S- be the class of analytic functions -f- in -\mathbb{D}=\{z: |z|< 1\}- with -f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}-. We investigate the subclass of Bazilevi{\v c} functions defined by, --\Omega^q f(z)=\Gamma(2-q) z^q D_z ^q f(z),-- where -\Omega ^q- be operator on -S- and -D_z ^q f- is the -q--fractional derivative of -f-. For -\alpha\ge 0- and -0\le q<1-, let -\mathcal{B}_1^q (\alpha,\lambda)- denote the class of Bazilevi{\v c} functions satisfying Keywords: Analytic functions, Bazilevic functions, q-fractional derivative, initial coefficients. Topic: Complex Analysis |
| ICONMAA 2024 Conference | Conference Management System |